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Anomalous heat conductivity induced by finite size and non-Markovian dynamics
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Heat conduction in a one-dimensional non-Markovian damping channel between two heat baths separated
by a finite distance is studied numerically. It is found that the Fourier heat law is not obeyed for a finite-size
underdamped channel under a Gaussian white noise and the coefficient of heat conductivity is a nonmonotonic
function of the channel length in the sub-Ohmic damping case. The key dynamic feature is that the system does
not approach the stationary state when it arrives at the cold bath for the former, and the system exhibits
different diffusive behaviors from ballistic diffusion to subdiffusion at initial and asymptotic periods of time for
the latter. We evaluate a damping-dependent critical separation size between two heat baths above which the
heat conductivity becomes independent of the separation.
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I. INTRODUCTION

An excellent situation for linking the stochastic process
with thermodynamics is heat conductivity [1-5]. It is inter-
esting to seek which systems obey the Fourier heat law, i.e.,
the coefficient of heat conductivity is independent of the
channel length as if the temperature difference between the
hot and cold heat baths is small [5-14]. The two typical
models have been proposed such as the two-dimensional
(2D) billiard gas channel and the one-dimensional (1D) dy-
namical heat channel, where the kinetic energy of system is
conserved anywhere within the channel and changes only at
collisions with heat baths. Previous works for the billiard gas
channel have predicted that the linear instability in the po-
lygonal billiards is sufficient for energy transport, obeying
the Fourier heat law [1,4-6,11]. Some authors suggested that
nonintegrability was necessary but not sufficient to guarantee
normal heat conductivity in the 1D Ilattices model [12].
Moreover, it has been proved that the momentum conserva-
tion leads to anomalous heat conductivity in the 1D lattice
model [7].

In the studies of anomalous heat conduction based on the
dynamical heat channel model, the diffusive behavior of en-
ergy carriers within the channel is usually assumed to be
either subdiffusion or superdiffusion. The mean first passage
time from the hot bath to cold one is used to calculate heat
current as energy exchange in unit time. Nevertheless, the
time-dependent transport process has not been presented yet
in detail, and the possible mechanism of anomalous heat
conductivity needs to be investigated. In recent years, there
has been great interest in anomalous diffusion, which has
been found in many situations [15]; therein, non-Markovian
memory damping and its corresponding thermal colored
noise play a critical role in the transport. Application to the
heat conductivity should be a subject of interest.

In this paper we would like to explore a possible origin of
anomalous heat conductivity in view of the time-dependent
transport process. The coefficient of heat conductivity is cal-
culated via Langevin simulation, and the effects of finite size
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and non-Ohmic memory damping are discussed. A relation
between the channel length and the damping strength is pro-
posed in order to distinguish normal and anomalous heat
conductivities.

II. THERMAL CHANNEL DESCRIBED BY GENERALIZED
LANGEVIN EQUATION

We consider each energy carrier with mass m starting
from the warm heat bath and stopping at the cold one, the
motion of carrier in the channel is assumed to obey a 1D
generalized Langevin equation (GLE) [15-20],

mx(r) + mf Yt —1")x(¢")dt' = &(1), (1)

0

where (¢) is the memory damping kernel, &(7) is a stationary
thermal noise with zero-mean (&(¢))=0 and obeys the
fluctuation-dissipation theorem (&(1)&(t")y=my(t—1")kgT(x),
kg is the Boltzmann constant, and 7(x) is the local tempera-
ture of the heat channel. The memory damping kernel func-
tion reads

w(t) = l%f de cos wt, (2)
ma), ®

where J(w) is connected to the frequency-dependent damp-
ing coefficient of the environmental oscillators y(w) and is
given by J(w)=mwy(w) [19]. For the Ohmic or Markovian
damping, spectral density is expressed as J(w)=m7yw and
then the damping kernel is reduced to y(r)=2yd(z). In the
non-Ohmic damping environment, J(w)=mysw/®)*'w
[19], where @ denotes a reference frequency allowing for the
damping constant mys to have the dimension of a viscosity
for any power exponent &. In the force-free case, the mean
square displacement of the particle reads (x*(r))o¢° with
subdiffusion for 0 < 6<<1, normal diffusion for é=1, super-
diffusion for 1 < §< 2, and ballistic diffusion for 6=2.

Let us consider a situation where the particle is initially
located at the hot end of the 1D channel with a positive
velocity distribution as
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where the absolute value of v is conveniently taken to eject
back the particle to heat channel after a one-time collision
with the warm bath. The transport process will be stopped
when the test particle reaches the cold bath. The thermody-
namic limit is obtained upon taking a long channel length
and the number density of test particles is kept to be fixed.
In order to investigate the thermodynamic properties of
heat transport in a convenient way, we fix the temperatures
of two heat baths as Ty and 7,=T,+AT, where the tempera-
ture difference AT is assumed to be small. The linear tem-
perature field applicable for small temperature differences
[2,11] is then taken as
To—-T, AT

L L @

VT =

T(x)=T), - f(Tl ~Ty), 5)

where L is the length of heat channel. Since the kinetic en-
ergy of the particle exchanges only at collision with each
bath, we define the heat transfer by the ith collision with the
cold bath,

0= AE; = Ein - E?m’ (6)

where E" and E? are the energies of the ith particle before
and after collision with the cold bath. The average heat flux
and the coefficient of heat conductivity [1,2,4-6] are

;-0 .
and
J
K=- Ww (8)

where (Q(t)) is the ensemble average over the heat transfer
QO(t) during the period ¢ of time.

For an ensemble of noninteracting particles, the heat flux
is written as J,,,=NJ(L) [4]. It is reasonable to assume that
the number of energy carriers is proportional to the system’s
size, so we take into account the number of carriers N being
also proportional to L. According to the Fourier heat law, the
coefficient of heat conductivity « is independent of the tem-
perature gradient VT when the applied temperature differ-
ence is small. This requires the heat flux J to be proportional
to the temperature gradient.

In the Langevin simulations, the test particle starts from
the hot bath and will be reflected by it (reflecting boundary)
with an inverse velocity if it returns to the hot bath; the
process is stopped as the test particle arrives at the cold end
(absorbing boundary) of thermal channel. This implies that
the heat transfer should be influenced strongly by the channel
length during a finite period of time. The parameters used in
this work are m=1, kz=1, Ty=1, T=1.05, y5=0.1, the num-
ber density of test particles is N/L=10°, and the time step
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FIG. 1. (Color online) Mean square displacement of a normal
diffusing particle divided by time for various damping strengths.

At=0.01. In order to verify whether the heat conductivity is
normal, we have to look at the heat conduction scaling with
the channel length. The heat flux J(L) of a single test particle
and then the coefficient of heat conductivity k=-/J,,,/VT
requires numerical calculation.

II1. EFFECTS OF FINITE SIZE AND NON-MARKOVIAN
MEMORY

A. Transient heat conductivity due to finite size

First we study the influence of finite size of thermal chan-
nel on the heat conductivity where the noise is considered to
be a Gaussian white one. The GLE (1) reduces to a Markov-
ian Langevin equation with y(£)=2vyd(¢). It is well known
that the diffusive behavior of a free Brownian particle driven
by the Gaussian white noise is normal at long times, i.e., the
mean square displacement (MSD) reads (x*(¢))=2Dt, where
D is the diffusion coefficient. It is expected that the normal
heat conductivity appears in the thermodynamic limit (L
— ), because the system can relax to the stationary state in
this case.

All quantities plotted here and below are dimensionless.
In Fig. 1, we plot the MSD of a force-free particle divided by
time for various damping strengths. This quantity is used to
check whether the system has arrived at the stationary state.
At the initial period of time, the MSD increases with time
faster than the linear law and shows ballistic diffusion; more-
over, normal diffusion is realized in the long time limit. The
time required for the system arriving at the stationary state is
defined as the relaxation time, which is proportional to the
inverse of damping strength for the regular Brownian dy-
namics.

Figure 2 shows the coefficient of heat conductivity « as a
function of the channel length L for various damping
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FIG. 2. (Color online) The heat conductivity « as a function of
channel length L for various damping strengths.
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FIG. 3. (Color online) The critical channel length L, as a func-
tion of the damping strength 1.

strengths. It is seen that the heat conductivity increases with
increasing channel length in the case of small L and ap-
proaches a constant when the value of L is large enough.
Furthermore, the coefficient of heat conductivity increases
with decreasing damping strength. This implies that the dis-
sipation is obstructive to the heat conductivity. Here we de-
fine a critical length L. above which the heat conductivity is
independent of the channel length. It is remarkable that the
critical length needs to be large in the underdamped cases.
Our results show that the Fourier heat law is not valid, even
for a normal diffusing system, if the channel’s size is finite
and the normal heat conductivity exhibits only in the ther-
modynamic limit.

In Fig. 3, we plot the critical length L. as a function of the
damping strength 7y at fixed temperature difference between
two heat baths. It is seen that the value of critical length
decreases with increasing damping and becomes short when
the temperature difference increases. From this figure we can
estimate the behavior of heat conduction, which is normal
above the curve, indicating the thermodynamic limit, and
might be anomalous one below the curve, exhibiting finite
size effect.

Let us consider the heat conduction in the presence of
ratchet potential [21,22] between two heat baths,

V,
—Ox, x € [0,aL)
CYLO
V(x) =
Y1)y [aLo.Lo)
————(Ly—x), x e [aLyL),
(1)L, 0 0-Lo

where Ly, V), and « denote the periodic length, the barrier
height, and the asymmetrical parameter of the ratchet poten-
tial, respectively.

In Fig. 4(a), we plot the coefficient of heat conductivity as
a function of the channel length L for various barrier heights
Vy at fixed Ly=1 and a=0.8. It is seen that the effect of finite
size is still exhibited in the ratchet channel. Namely, the tran-
sient heat conductivity increases with increasing the channel
length and the coefficient of heat conductivity approaches a
constant in the case of large L. Figure 4(b) shows the depen-
dence of heat conductivity on V. Upon inspection, we find a
prominent result: « is a nonmonotonic function of V. As it is
known that the effective potential should be tilted along the
slow direction of the ratchet if the multiplicative noise
(position-dependent temperature here) is changed into an ad-
ditive noise [23], there exists a directed current between the
hot and cold baths. This is called the ratchet effect. The
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FIG. 4. (Color online) The heat conductivity « in the presence
of ratchet potential with @=0.8 vs the channel length L in (a) and
the barrier height V, in (b).

selective role of the ratchet potential is weak for small Vj;
however, the carrier requires the potential for large V; to be
overcome and thus the directed current is decreased. There-
fore, the directed dynamical transport helps the heat conduc-
tivity at a finite barrier of ratchet and thus the coefficient of
heat conductivity varies nonmonotonously with the ratchet’s
barrier.

B. Influence of non-Markovian dynamics on heat conduction

One of the dynamical sources of anomalous diffusion is
due to nonlocality in time, such as the velocity of the particle
having a memory effect. The non-Ohmic damping mecha-
nism is frequently used to discuss anomalous diffusion. Here
we consider the behavior of heat conduction in the non-
Ohmic damping environment for a finite thermal channel.

We apply the inverse Fourier transform technique [24] to
simulate numerically GLE (1) with the non-Ohmic memory
damping. In the w Fourier space, the correlation function of
noise reads

(fw)é(0) =2my(w) 0+ o'), )

where &(w) and y(w) are the Fourier transforms of &(r) and
(1), respectively. We discretize first the time in N=2" inter-
vals of mesh size Ar. This mesh size can be taken to be the
smallest time scale associated with the problem at hand. The
discrete Fourier version of the correlation is given by

(fw,)é(w,)) = V@, )NALS,,, . (10)

Then the noise term in the Fourier space is written as

éw,) =VNAty(o )a,, wp=1,...,.N-1
&(wg) = Ewy), (11)
where «, are the Gaussian random numbers with zero mean

i
and correlation (@, a,)=9J,, _,.

In Fig. 5, we plot the coefficient of heat conductivity as a
function of the channel length for two kinds of power expo-
nents 6=0.5 and 6=0.3. The result shows a nonmonotonic
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FIG. 5. (Color online) The heat conductivity « as a function of
the length L of sub-Ohmic damping channel with two kinds of
power exponents 6=0.3 and 6=0.5.

varying behavior with the channel length. For a finite-size
channel, the heat conductivity increases with the increase of
channel length, because the diffusion is faster than the linear
behavior due to the transient process. If the size of dynamical
channel is large enough, the heat conductivity should show a
convergent behavior, i.e., ko LB with B<0. The smaller the
value of Jis, the faster the heat conductivity decreases. As L
goes to infinity, the heat conductivity approaches vanishing.
This is interesting that the present dynamical channel be-
comes a thermal insulator in the thermodynamic limit of
L— o,

The size-dependent heat conductivity is shown in Fig. 6
for 6=1.3 and 6=1.5. The finite size effect is observed
clearly in the case of small L, which originates from the
diffusive behavior of the particle at the transient process. If
the size of the thermal channel is large enough, the heat
conductivity increases with channel length in the power form
x> LP. Here the exponent [3 is connected to the non-Ohmic
exponent & with an approximate formula B=2-2/6 [3].
Anomalous heat conduction with a divergent behavior L?
(0<B<1) has been proved in the 1D billiard models with
triangles whose interangles are rational multiples of 7 [6].

Ballistic diffusion can be realized in the non-Markovian
Brownian dynamics driven by either a broad-band colored
noise [16] or a harmonic velocity noise [18]. The MSD in-
creases with the square of time, which is the limit of thermal
superdiffusion. The heat conductivity is shown in Fig. 7. The
finite size effect is still shown in the case of small L. Note
that the heat conductivity increases linearly with channel
length when L is large enough. Such behavior has been ob-
served in the harmonic lattice [27], because the phonon
transports ballistically in the lattice. The heat conductivity
diverges in the thermodynamic limit.
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FIG. 6. (Color online) The heat conductivity « as a function of
channel length L with two kinds of power exponents 6=1.3 and
6=1.5.
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FIG. 7. (Color online) The heat conductivity « as a function of
channel length L in the case of ballistic diffusion.

The motion of the present energy carriers should mainly
be thermal diffusion, since the temperature difference be-
tween two heat baths is considered to be small. In order to
analyze the dependence of the heat conductivity on the chan-
nel length, we write the mean square displacement of the
particle subjected to a non-Ohmic damping, i.e.,

o
(A0 =2 2B, [~ (0, (12)

where T is the average temperature, and we have used the
generalized Mittag-Leffler function defined by the series ex-
pansion E, g(x)=2_x"/T'(an+p) [25]. All the above re-
sults can be understood well from the concept of the mean
first passage time from the hot bath to the cold bath.

If the thermal channel is short, the particle arrives quickly
at the cold bath. During a very short period of time, Eq. (12)
is approximately rewritten as

oo o ksT
(Ax=(1)) = 2mF(3)t , (13)

and then the mean first passage time is given by (f;z)

=[mI'(3)/(2kzT)]"*L. According to the definition of the
heat conductivity, «=-NJ/VT with the current J
=AT/(2{t;)), we obtain the coefficient of heat conductivity
as k=cL, where c is a constant. This implies that the coeffi-
cient of heat conductivity increases linearly with channel
length for a short thermal channel.

On the other hand, the test particle should require long
times to arrive the cold bath if the thermal channel is long. At
long times, we have

T 52
kBT s s

(M) =27 =rT 5

(14)

and (1, ) =[mI'(1+ &)/ (2kpTw’*)]°L¥?, so that k=cL>~/°,
This leads to a divergent result for the heat conductivity if
6> 1. More importantly, it is shown that the coefficient of
heat conductivity is a nonmonotonic function of the channel
length if 6<1.

IV. CONCLUSION

We have investigated the effects of finite size and non-
Markovian memory damping on the heat conduction in the
one-dimensional dynamical thermal channel. Our results
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have shown that the Fourier law for the heat conduction can-
not be obeyed even for a normal diffusing system and which
is valid only in the thermodynamic limit, i.e., the infinite size
of thermal channel. This is due to the fact that the nature of
time-dependent diffusive behavior for Langevin dynamics
varies when the damping strength changes. We have defined
a critical length above which the heat conductivity is inde-
pendent of channel length. Moreover, we have found that the
directed transport of energy carrier can help heat conduction
in the presence of ratchet potential. Indeed, anomalous heat
conductivity also exhibits in a non-Markovian memory
damping channel with non-Ohmic form even in the thermo-
dynamic limit; the heat conductivity is a nonmonotonic func-
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tion of channel length in the sub-Ohmic damping case. It is
reported that the anomalous heat transport process has been
observed in many real physical systems, such as the binary
hard sphere model [26], the harmonic lattice [27], and in
single wall nanotubes [28]. Furthermore, anomalous heat
conduction should have an extensive application in the inno-
vation of novel thermal devices.
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